# Ceramic properties

**AL-995**™

Alumina (MAC-A995W)

© 2002 Morgan Technical Ceramics, a division of The Morgan Crucible Company plc

#### **Description**

High purity alumina ceramic of 99.5% Al<sub>2</sub>O<sub>3</sub> content. Its purity, chemical resistance and high temperature capabilities prove invaluable for semiconductor processing applications.

#### **Prime features**

- Electrically and dimensionally stable at high temperatures.
- Low particle generation.
- Dense, non porous and vacuum tight.
- Excellent dielectric properties.
- Accepts moly-manganese metallising for high temperature brazing of vacuum tight assemblies.
- Excellent chemical and abrasion resistance.

## Typical applications

- Wafer processing and handling devices.
- Components for semiconductor process chambers, spluttering targets, fixtures, etc.
- Laser devices for wide range of industrial, medical and defence duties.
- Power tubes for klystron and x-ray equipment.
- Flow meters and pressure sensors.

#### **Specifications**

• Quality Assurance to ISO 9002.

## MAC production capabilities

- Isostatic and dry pressing, green machining.
- CNC grinding and lapping to very tight tolerances.
- Metallising of components.
- High temperature brazing of assemblies.
- Prototype, batch and volume production.

## Physical properties\*

| Color                                | White            |
|--------------------------------------|------------------|
| Bulk density (fired), Mg/m³ [lb/in³] | 3.86 [0.139]     |
| Porosity (apparent), %               | 0 (fully dense)  |
| Rockwell hardness (R45N)             | 81               |
| Compressive strength, MPa [lb/in²]   | >2070 [>300,000] |
| Flexural strength, MPa [lb/in²]      | 310 [45,000]     |

Thermal conductivity, W/m.K [BTU/ft.hr.°F] @RT 29.3 [16.9]

Thermal expansion coefficient,  $10^{-6}/C$  [ $10^{-6}/oF$ ]

| Maximum no-load temperature, C [°F] | 1725 [3150] |
|-------------------------------------|-------------|
| 800-1000C [1470-1830°F]             | 9.4 [5.2]   |
| 600-800C [1110-1470°F]              | 9.0 [5.0]   |
| 400-600C [750-1110°F]               | 8.3 [4.6]   |
| 200-400C [390-750°F]                | 7.8 [4.3]   |
| 25-200C [77-390°F]                  | 6.9 [3.8]   |

Dielectric strength, dc kV/mm [V/mil] @RT 31.5 [800]

|                                       |   |         | 25C     | 300C    | 500C    |
|---------------------------------------|---|---------|---------|---------|---------|
| Dielectric constant, K <sup>I</sup> , | @ | 10MHz   | 9.58    | 9.92    | 10.20   |
|                                       | @ | 1000MHz | 9.30    | _       | _       |
|                                       | @ | 8500MHz | 9.37    | 9.61    | 9.82    |
| Dissipation factor, tan $\delta,$     | @ | 10MHz   | 0.00003 | 0.00009 | 0.00040 |
|                                       | @ | 1000MHz | 0.00014 | _       | _       |
|                                       | @ | 8500MHz | 0.00009 | 0.00014 | 0.00025 |
| Loss factor, $K^{l}$ .tan $\delta$ ,  | @ | 10MHz   | 0.00029 | 0.00089 | 0.00408 |
|                                       | @ | 1000MHz | 0.00130 | _       | _       |
|                                       | @ | 8500MHz | 0.00084 | 0.00135 | 0.00245 |

Volume resistivity, ohm.cm

| volume resistivity, or | IIII.CIII       |                      |
|------------------------|-----------------|----------------------|
|                        | @ 25C [77°F]    | > 10 <sup>14</sup>   |
|                        | @ 300C [570°F]  | 2.0x10 <sup>11</sup> |
|                        | @ 600C [1110°F] | $6.0x10^8$           |
|                        | @ 900C [1650°F] | $2.5 \times 10^6$    |
| Te value, C [°F]       |                 | >975 [>1790]         |

